If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-60x-875=0
a = 7; b = -60; c = -875;
Δ = b2-4ac
Δ = -602-4·7·(-875)
Δ = 28100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28100}=\sqrt{100*281}=\sqrt{100}*\sqrt{281}=10\sqrt{281}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-10\sqrt{281}}{2*7}=\frac{60-10\sqrt{281}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+10\sqrt{281}}{2*7}=\frac{60+10\sqrt{281}}{14} $
| M1=3y+6 | | 10x+14=15x-16 | | A(p)=-2.2p+23.32 | | t=-2(2t)3 | | (z+2)^2+15=0 | | (z+2)^2=-15 | | 2/3m+1/4m=25 | | 6^3y=8^y-3 | | 6^3y=8^y-1 | | 1.2–0.07y=y–0.18 | | 1.2–0.07y=y–0.18 | | 3.25x+400=2.50x+6 | | 5/p+6=2/p | | S=3/2n+31 | | 5xx9=-72 | | 75+3x+4x=180 | | 2x*x=168 | | 120=25+2x+3x | | -5x+21+2x=9x-3 | | 9−5x=24 | | x+x+1+x12=96 | | 4x+450=3x+500 | | 3x+2=-15x-13+15x | | 6x+22=3x-2 | | 5x+450=4x+550 | | -15x-49=-14x-13-3x | | 5x+5(3/2)=12 | | 9x+75=-7x-5 | | x2+x3=125 | | 2x(x-8)=30 | | 55.96=3.14r/8.5^2+r^2 | | 4x+7=6x-2-3x |